Simplifying Calculus

by Using

Uniform Estimates

BY

Michael Livshits

michaelliv@gmail.com mysite.verizon.net/michaelliv www.mathfoolery.org

Playing with Formulas

Differentiating Polynomials

How to make sense of $\frac{x^{2}-a^{2}}{x-a}$ for $x=a$?
Of course, we just factor the numerator
and cancel $x-a$, so we get

$$
\left(x^{2}\right)^{\prime}=\left.\frac{x^{2}-a^{2}}{x-a}\right|_{x=a}=\left.\frac{(x+a)(x-a)}{x-a}\right|_{x=a}=2 x
$$

and now we can differentiate x^{2}.

With a bit more work we get

$$
\left(x^{3}\right)^{\prime}=3 x^{2},\left(x^{4}\right)^{\prime}=4 x^{3}, \ldots,\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

This trick will work for any polynomial $f(x)$ because $x-a$ divides $f(x)-f(a)$, so

$$
f^{\prime}(x)=\left.\frac{f(x)-f(a)}{x-a}\right|_{x=a}
$$

We don't have to divide polynomials because of...

Differentiation Rules

- $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $(k f)^{\prime}=k f^{\prime}$ for any constant k
- $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
- $\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.$

Demonstrating these rules for polynomials is a matter of simple algebra of course.

Roots

How to make sense of $\frac{\sqrt{x}-\sqrt{a}}{x-a}$ for $x=a$?
It's the same problem that we started with,
turned upside down, so we know what to do.

$$
\left.\frac{\sqrt{x}-\sqrt{a}}{x-a}\right|_{x=a}=\left.\frac{\sqrt{x}-\sqrt{a}}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}\right|_{x=a}
$$

so we get $(\sqrt{x})^{\prime}=\left.\frac{1}{\sqrt{x}+\sqrt{a}}\right|_{x=a}=\frac{1}{2 \sqrt{x}}$

It's clear now that $(\sqrt[n]{x})^{\prime}=\frac{1}{n(\sqrt[n]{x})^{n-1}}$
(powers upside down, again)

Implicit Differentiation, Quotients

Another way to derive the formula for $(\sqrt[n]{x})^{\prime}$ is to rewrite $y=\sqrt[n]{x}$ as $y^{n}=x$, to differentiate this equation to get $n y^{n-1} y^{\prime}=1$ and to solve for y^{\prime}. This trick, called implicit differentiation, makes it easy to get $\left(x^{m / n}\right)^{\prime},(u / v)^{\prime}$ and even y^{\prime} if $y^{7}+y+x=0$, when we are at a loss to derive a formula for y itself. We are stretching it a bit here, of course, by assuming that y^{\prime} is defined, but it turnes out O.K. if we don't have to divide by zero, as the implicit function theorem says.

An Application: a Holy Bucket.

From energy conservation $v=\sqrt{2 g H}$, from incompressibility $A H^{\prime}=-e a v$, where e is the efflux coefficient.
sin and cos

Areas, Newton-Leibniz by example

What about the other powers? Fermat's idea:

Archimedes approach:

Uniform grid approach:

Antiderivatives and integrals

$$
\begin{gathered}
F^{\prime}=f \Leftrightarrow \int f(x) d x=F(x)+C \\
\int x^{k} d x=x^{k+1} /(k+1)+C \text { for } k \neq-1 \\
\int \cos =\sin +C, \int \sin =-\cos +C, \text { etc. } \\
\int_{a}^{b} f(x) d x=F(b)-F(a), f=F^{\prime}
\end{gathered}
$$

Integration rules, positivity, additivity.
Now what about $\int d x / x$?

$$
\int_{a}^{b} d x / x=\frac{b^{0}-a^{0}}{-1+1}=\frac{0}{0}
$$

and we meet our old friend again.

But geometrically speaking, the area under $1 / x$ makes sense, we just have to figure out what it is. To do it, we just look at the picture...

...and see that it is some sort of a logarithm.
It is called the natural logarithm, so

$$
\int_{a}^{b} d x / x=\ln (b)-\ln (a), \int d x / x=\ln (x)+C
$$

and $\left(e^{x}\right)^{\prime}=e^{x}$ (by implicit differentiation).

Playing with Inequalities

Why a tangent looks like a tangent
After examining a few examples

we arrive at the estimate

$$
\left|f(x)-f(a)-f^{\prime}(a)(x-a)\right| \leqslant K(x-a)^{2}
$$

and call f ULD (uniformly Lipschitz differentiable).

It follows that

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right| \leqslant K|x-a|
$$

and we conclude that $\left|f^{\prime}(x)-f^{\prime}(a)\right| \leqslant 2 K|x-a|$, i.e. f^{\prime} is Lipschitz.

Increasing function theorem

$$
f^{\prime} \geqslant 0 \text { and } A \leqslant B \Rightarrow f(A) \leqslant f(B)
$$

We first assume that $f^{\prime} \geqslant c>0$ and look at the estimate defining ULD. We see that

$$
0 \leqslant x-a \leqslant c / K \Rightarrow f(a) \leqslant f(x),
$$

and therefore $f(A) \leqslant f(B)$ because we can get from A to B by taking steps shorter than c / K (according to Archimedes).
Now for $f^{\prime} \geqslant 0$ we can conclude that $f(B)-f(A) \geqslant-c(B-A)$ for any $c>0$, and therefore $f(A) \leqslant f(B)$. Q.E.D.

Integrability of Lipschitz functions and Newton-Leibniz

We can pick piecewise - linear \bar{f} and f, $\underline{f} \leqslant f \leqslant \bar{f}$ and $\bar{f}-\underline{f} \leqslant 4 L h$, where h is the mesh size and L is the Lipschitz constant for f. Then the inequality

$$
\int_{a}^{b} \underline{f} \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} \bar{f}
$$

will define $\int_{a}^{b} f$ uniquely. Positivity, additivity and Newton-Leibniz follow.

